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Executive Summary

The Critical Ecosystems Partnership Fund (CEPF), since 2007, has directed investments to the tune of $6 million
towards conservation initiatives in the Western Ghats biodiversity hot spot. Projects supported by CEPF covered
direct conservation interventions, research and documentation of biodiversity and conservation challenges,
and awareness raising regarding conservation.

In late 2013 a study was commissioned to determine whether there were any measurable changes in ecosystem
services as a result of these interventions in the Western Ghats. These were to be measured in terms of 1) Extent
of improvement in habitat as a proxy for biodiversity services, 2) Extent of improvement in hydrological services,
and 3) Extent of improvement in carbon services. Findings are presented both as an overall analysis of trends
across the Western Ghats as well as a comparison between key biodiversity areas (KBA) selected by the CEPF
for interventions (priority KBA) and those where interventions were not undertaken (non-priority KBA). This
study also aimed to develop a scientifically valid and replicable framework for monitoring impacts of CEPF
interventions on ecosystem services.

Weused twoprincipal sources of data namely,MODIS andLandsat for analysis. We useddynamic linearmodels to
remove the e�ect of climatic variables (rainfall and temperature) on the observed trends in the three ecosystem
services studied. Thus the reported trends are largely impacts of conservation interventions and other non-
climatic processes.

Key results showed no significant change in any of the three ecosystem services in nearly half of the Western
Ghats. In the remaining region, results showed a declining trend in NDVI as a proxy for biodiversity, but an
increasing trend was observed in carbon storage and hydrologic services. When priority KBAs were compared
with non-priority KBAs, a decreasing trend in NDVI was seen in a larger proportion of priority KBAs than non-
priority KBAs. However, results from the carbon services indicate a greater proportion of area with increase in
carbon sequestration in both priority and non-priority KBAs. The total amount of carbon sequestered by priority
KBAs was almost twice that of non-priority KBAs. Results of the hydorlogical services show a greater proportion
of area with increase in blue water services (streamflow, soil moisture and ground water recharge) for both
priority and non-priority KBAs. The total amount of blue water provided by priority KBAs was almost twice that
of non-priority KBAs.

It is not possible to attribute the observed trends to interventionsmadeby a single programme. Hence our results
represent a combination of conservation actions by di�erent players. Our study suggests that freely available
remotely sensed products likeMODIS and Landsat can be used e�iciently to analyse trends in ecosystem services
as a response to conservation/anthropogenic factors at a given site. The framework provided in this study can
be improvised to monitor impact of climate change on ecosystem processes and services, and in predicting
future changes in the ecosystem.
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Background

Goal and Objectives

This study aimed to develop a scientifically valid and replicable framework for monitoring impacts of CEPF
interventions on ecosystem services. The objectives of this study were to measure trends in three ecosystem
services using remotely sensed proxy’s or indices namely

1. Biodiversity

2. Hydrologic and

3. Carbon.

This technical report describes the data spanning the period 2000 to 2013, analytic procedure and results of the
analysis. We also present an interpretation of the results along with a brief discussion on the way forward.

The study had twomajor deliverables. 1) A complete technical write-up (this report) and 2) the source code used
for the analysis along with associated documentation*. The results have been presented in terms of overall
trends in the ecosystem services and trends across priority KBA in comparison to non-priority KBA, the latter
providing the control. The script used for the analysis will facilitate replication of this exercise in other regions
with minimal expert intervention.

Study Design

The design of this study needed to meet the following major requirements:

1. The analysis presented could be re-run on data for di�erent regions with minimal modification of the
script.

2. Data requirements were to be limited to existing monitoring procedures at CEPF and the use of freely
available satellite imagery. No field work or additional field based data was to be used.

3. The methods used were to rely on established protocols for analysis which had been published in high
ranked peer reviewed journals and tested in production environments.

4. Results of the analysis were to be presented in terms of percentage change as well as graphs. Additional
detailed results of the analysis were to be provided in this technical report.

5. Open source so�ware was to be used throughout this study. The code written to do the analysis was to be
released under a Creative Commons open source license to facilitate peer review and improvement.

The required outputs of this study were:

• Maps showing trends in change of the normalised di�erence vegetation index (NDVI) as a proxy for biodi-
versity services (45), hydrologic services as blue and green water and carbon services, covering the period
2000 to 2013.

*Published on GitHub https://github.com/feralindia/CEPF_monitoring and https://github.com/feralindia/CEPF_

monitoring/wiki
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• A comparison between CEPF invested key biodiversity areas (priority KBA) and areas without CEPF invest-
ment (non-priority KBA) for these services.

• A documentation of the script used for the analysis, along with relevant citations.

Overview of Methods

Download Data

Rectify & Correct

Radiometrically

LANDSAT

Remove Bad Pixels

 using QA Layer

MODIS

Determine Methods

 Based on Literature Review

Derive Intermediate

Layers

Check Output Against

 Published Results

Results

not

Consistent

Derive End Product

Consistent

Results

Extract Trend

 for Each Pixel

Report Results

Figure 1: Simplified flowchart of steps used for analysing
the imagery.

The methods adopted in this study were significantly
influenced by the recent publication of globalmaps of
forest cover loss between the period 2000-2012 (31,32).
The work of Hansen et al. (31) was based on a time se-
ries of Landsat images and training data from Quick-
bird imagery validated through existing percent tree
cover layers based on Landsat and MODIS. Their ap-
proach was based on estimating forest loss / gain us-
ing decision trees and the trends using ordinary least
squares slope of the regression of annual loss versus
year. To validate the modelled outputs, the authors
use MODIS NDVI data. As acknowledged by the au-
thors to fully characterise these dynamics, such ef-
forts should extend beyond estimating forest cover
loss to identifying causes of forest cover loss and to
estimate recovery rates. Other issues with the paper
included the categorisation of forests which did not
di�erentiate between plantations and native species
(all vegetation taller than 5mwas classified as forest)
and the definition of gain and loss of forests which
was categorical and coarse in terms of time scales.

We used a non-parametric regression based approach
which provides more information than a simple im-
age subtraction procedure (16). A continuous non-
parametric linear regressions was used to quantify
change as a trend (48,96) broadly along the approach
used by Reymondin et al. (76) for integrating data from
the Tropical Rainfall Measuring Mission (TRMM) into
the analysis to account for changes in NDVI due to
rainfall.

The non-parametric Sen slope (88) was used to quan-
tify themagnitude of themonotonic trend in the time-series of vegetation quality, carbon services and hydrolog-
ical services. This approach involves computing slopes for all the pairs of ordinal time points and then using the
median of these slopes as an estimate of the overall slope. Unlike linear regression, it is not greatly a�ected
by data errors, outliers, or missing data. Results from the vegetation quality, carbon services and hydrologic
services analysis were used to analyse the spatial variability of trends for the period 2000 – 2013 for all pixels
within the Western Ghats. The overall procedure that was followed comprised of six steps, namely:

1. Downloading data a�er checking for quality.
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Images were first screened using quality control documentation on the respective sites. For Landsat, we
discarded imageswithmore than 10% cloud cover and only downloaded imageswhich had been corrected
for terrain. For MODIS we used pixel reliability or quality layer provided along with the product to remove
pixels which were a�ected by cloud, sensor and aerosol e�ects. Automated scripts were used to download
MODIS data. Scripts were written to batch process the original HDF file, they were re-projected to WGS
84 datum and converted to geo-ti�s. The output files were renamed to indicate the row path, date and
product.

2. Performing radiometric corrections.

For Landsat images cloud assessment and removal throughmasking was done followed by radiometric
normalisation using the dark object subtraction method (DOS4).

3. Identifying procedures for processing images.

An extensive literature review was undertaken ahead of the study to identify the broad framework for
analysis. This was refined to specific procedures a�er assessing the pros and cons of alternative methods.

4. Derive intermediate products.

A number of intermediate products were derived prior to the final output, at each stage the output was
validated against published literature. On occasion, results had to be rejected and alternative procedures
adopted based on additional review of literature.

5. Derive index for the respective ecosystem service.

The final annual measure of each ecosystem service was validated against published literature and other
comparable data-sets.

6. Run trend analysis.

Finally trends in the three ecosystem services were determined for the period 2000 to 2013. First “raw”
trend, not corrected for e�ects of temperature and rainfall, was derived. The trend analysis was then
repeated a�er these e�ects were removed, to approximate the impact of non-natural processes on trends.

We used four principal sources of data namely, MODIS (43), Landsat 7 ETM (14), TRMM: 3B43 (39) and ASTER (1).
Methods used for analysis are presented below.

The following datasets were downloaded from relevant sites:

• MODIS (2000–2013)

– MOD13Q1[version5]: NDVI

– MOD11A2[version 5]: Land Surface Temperatures

– MOD17A3[version5.5]:Net Primary Productivity

– MOD16A2[version 5]: Evapotranspiration

– MOD16A3[version5]: Potential Evaopotranspiration

– MOD44B[version 5.1]: Tree-cover

– MCD12Q1[version 5]: Landcover

• Landsat 7 ETM (1999–2013): Multispectral (8 band) imagery
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• TRMM: 3B43 [version 7]: Potential rainfall

• ASTER: Digital Elevation Model (DEM)

All these datasets are available free of cost from web portals. Each dataset was screened for quality prior to
downloading. The Landsat 7 ETM datasets used were L1T corrected prior to distribution (57), implying they were
geometrically corrected and had been corrected for terrain e�ects.

Radiometric correction of images

Pre-processing of images to correct radiometric and geometric errors is a prerequisite to image processing. We
encountered three major types of errors:

• Atmospheric interference - this is caused by aerosols, moisture and dust which alter the reflectance at the
sensor. All images were corrected for top of atmosphere reflectance and at surface radiance using dark
object subtraction.

• Instrumentation errors - errors which creep in due to malfunctioning of the sensors such as the scan line
corrector malfunction for Landsat 7. Available techniques for gap filling o�en introduced artefacts in the
data which would have influenced our results. Our approach was therefore to reduce the gap by merging
multiple images from the same season and year by extracting the maximum digital numbers.

• Cloud cover - obscuring of scenes due to cloud cover was dealt with by identifying clouds andmasking
them out of the image. Amerger of the same season/year images as described earlier was then donewhich
reduced the gaps in the final product.

Techniques we used for pre-processing of images were based onmethods followed in peer reviewed literature.
Relevant publications include Hansen et al. (31) and Potapov et al. (69) both of who performed top of atmosphere
correction based on Chander et al. (14). Other relevant literature includes Hansen et al. (33) for pre-processing
Landsat data, Hansen et al. (30) for MODIS and Hansen and DeFries (29) for selecting cloud free images and forest
change metrics. The latter procedure is also illustrated in Broich et al. (10).

The approach used by Hansen et al. (31) involved a mix of Landsat and MODIS products and they normalised the
images using dark object subtraction method. Systematic di�erences across Landsat scenes due to variations in
scan angles were rectified using a linear relationship described in Hansen et al. (33)

Various techniques have been employed for cloud removal which includes the use of classification trees based
on two-band ratios as inputs (33,68,69). A di�erent approach was followed by Reymondin et al. (76) who used the
Harmonic ANalysis of Time Series (HANTS) algorithm (42).

Filling of gaps created due to the failure of the scan line corrector on Landsat 7 has been dealt with di�erently.
Among the most common techniques is to use compositing between di�erent periods (10) which is also used to
fill in gaps created by clouds.

Top of atmosphere correction

The Geographical Resource Analysis Support System (GRASS) is a comprehensive open source package for GIS
and remote sensing. The GRASS module “i.landsat.toar” was used to perform atmospheric correction using
the dark object subtraction (DOS4) method and for calculating top of atmosphere radiance values which were
subsequently utilised for the cloud detection andmasking operations.
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Cloud detection

The Landsat automatic cloud cover assessment module “i.acca” uses the algorithm from Irish et al. (40). The
algorithm is “an unsupervised classifier for clouds, which takes advantage of known spectral properties of
clouds, snow, bright soil, vegetation, and water” (40). The GRASS module “i.acca” uses reflectance values of
images processed with the module “i.atcorr”. Other approaches used for cloud filling include the use of Fourier
analysis of time series (79).

De-striping

Striping is caused by the failure of the Scan Line Corrector (SLC) in Landsat 7 ETM on May 31, 2003, as described
on the United States Geological Survey (USGS) web page† and led to a wedge shaped area appearing on the
image edge leading to the loss of about 22% of the total pixels per scene.

De-striping methods There are two common approaches within which di�erent algorithms can be used for
removing stripes from images.

Statistical techniques for filling in from existing image edges This technique requires an interpolation
of neighbouring (edge) pixels to fill in gaps. Examples of algorithms used include:

1. gdal_fillnodata.py‡ uses a four directional conic search and an inverse distance weighting to interpolate
values from neighbouring edge pixels of gaps described by a MASK file (23).

2. Interpolation using a neighbourhood filter wider than the maximum size of the void (14 pixels).

This method has the following advantages:

1. It uses pixel values from the existing scene and not from a referenced scene. The latter method would
result in repetitions of pixels for a series of images in the same tile leading to a flattening of the NDVI slope
during the analysis.

2. It uses fewer assumptions than some of the more involved statistical approaches.

On the down side this method may introduce artefacts from the interpolation which would have otherwise
been corrected. For example, an abrupt change in land cover from a building or small water body will not be
detected, instead pixel values interpolated from the edges will be used. Another disadvantage is that it causes
smudging of the resulting raster as shown in figure 2. This smudging can be reduced by lowering the width of
the neighbourhood filter.

Mosaicking of images and extraction of pixel values from reference images Mosaicking requires the
reference image to be filled in by one or more “reference” image set. The latter is a SLC-on image, i.e. before
the SLC failed. This image is typically the closest anniversary date image to the SLC-o� image. Other properties
desired from a reference image are listed in the USGS page§

1. Image segmentationwhereNxNpixelwindows froma source raster nearest in year-date are used to replace
same sized windows in the gap.

†http://landsat.usgs.gov/products_slcoffbackground.php
‡http://www.gdal.org/gdal_fillnodata.html
§https://landsat.usgs.gov/images_will_work_best_to_fill_in_the_gaps.php
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Figure 2: Results of running the gdal_fillnodata.py algorithm on a striped image (le�). The results show a smudging
of the image for the entire width defined in the gap-filling routine.

2. The USGS approach (87), similar to the one above, where a no-gap image closest in terms of the anniversary
date of the SLC-o� image is used to fill in the void pixel by pixel. Values used are based on bias corrections
and standard deviates of pixel brightness. The method is computationally e�icient and is utilised by
numerous commercial packages.

3. A statistical approach where no-gap images are used alone or in time-series to predict the value of the
missing pixels in the gap.

Procedure adopted We first ran the analysis without filling in the SLC gaps as initial runs showed that overlay
of three or more scenes from the same tile acquired close together in time resulted in a substantial filling of the
SLC gap. Given that our analysis required images taken from seasonal time periods, it was assumed that we
could fill in gaps from the SLC error simply by taking values from temporally adjacent images. While this may not
totally replace the gap, it would reduce it substantially as demonstrated in figure 3. Further, as we are detecting

Figure 3: Reduction of the gap due to SLC errors by overlaying temporally adjacent images. Two adjacent images
(le�) and three adjacent images (right).

change based on a statistical slope derived from images spanning over a decade, it was felt that a fewmissing
points due to gaps in data are unlikely to a�ect the overall results obtained.

However, on analysing the final product we found that the SLC gaps were distinct from the other regions of the
image on account of varying NDVI values in the images used to fill in the missing pixels. Therefore we reverted to
the interpolation method provided by the GDAL libraries for the gap filling of images for this exercise.
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For the MODIS images a di�erent approach was used. We first removed the pixels a�ected by cloud, aerosols,
sensor artefacts etc., using pixel reliability or quality assessment layer provided along with the product. We then
corrected for bad pixels and filled the gaps in the MODIS layers (NDVI and LST), by performing Harmonic ANalysis
of Time Series (HANTS) algorithm on original time series data (79) in GRASS 7 (r.hants module).

Analytic approach

Weused a statistical or “so�” approach tomeasure the extent of change observed in the study area. This provides
a number of specific advantages over “hard” approaches where the data is categorised into fixed and o�en
arbitrary groups.

1. Statistical approaches are less sensitive to data gaps, provided there are su�icient number of points
available to determine a trend. This can play an important role in areas where successive imageries may
not be available due to atmospheric disturbances (cloud cover) or where the data itself has gaps such as
the SLC error in Landsat 7 images a�er 2003.

2. Statistical measurements allow us to derive confidence intervals for the reported change. This is cru-
cial when using such information for decision support where di�erent degrees of confidence may be
appropriate according to the given application.

3. Unlike approaches where responses are reported in hard classifications, statistical results are reported on
a continuous scale.

Removing the effect of climatic variables

Dynamic linearmodels (DLM) have been used in di�erent scientific disciplines to study trends over time and these
include stream hydrology and population ecology (11,47,49) andmore recently to analyse changes in vegetation
greenness in response to climate change (48). In a linear regression, the regression coe�icients do not change
over time. However, in a dynamic linear model the regression coe�icients, the intercepts and slopes can vary
as a function of time. Thus allowing us to capture the time-varying nature of the relationship. In a DLM the
regression coe�icients are generated for each time step, the trend in the intercept can be interpreted as variability
in the response variable that is not captured by the co-variates alone. In this case the response variables are
biodiversity services, hydrologic services and above ground carbon sequestration and the co-variates used
are rainfall and temperature. The monotonic trends in the regression coe�icient can be estimated using a non
parametric bootstrap estimate of the median values or by fitting a non-parametric Sen slope.

We used data from the TRMM (TRMM3B43 dataset) to derive monthly rainfall estimates for each of MODIS and
Landsat layers used in the analysis. Remotely sensed Land Surface Temperature was used to characterise
ambient temperature. To improvise computational e�iciency we restricted the analysis to annual time series of
MODIS and Landsat data. However the same approach can be used to work with the original 16 day MODIS data
and 3 hourly TRMM3B42 datasets.

We then ran a dynamic linear model to extract the intercept for each response layer (biodiversity services,
hydrologic services and above ground carbon sequestration) with rainfall and temperature as climatic variables
which influenced the response variable. The monotonic trends derived from the Sen’s slope of the intercept
can be interpreted as variability in the response variable that is not captured by the co-variates, and can be
attributed to anthropogenic sources.
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Challenges and Opportunities

There were a number of challenges which had to be overcome during this study, some of which considerably
delayed our progress. The most serious of these was the di�iculty in building a seasonal or annual time series of
gap filled Landsat images. This is owing to persistent cloud cover, particularly during the monsoons, and the
increasing scan line gap from 2003 to 2013. The computational requirements imposed by the large datasets and
the limited computational power at our disposal was another challenge. The dataset comprised hundreds of
images, all of which needed to go through many intermediate steps prior to the results. Consequently, com-
putational times were very large. Most scripts ran for days to deliver each intermediate result. An additional
cause for added computational times was “false starts”, where weeks to months of e�orts had to be discarded in
favour of a di�erent approach.

The inclusion of Landsat images in the analysis, on the suggestion of earlier reviewers of the proposal, was a
major challenge. The Landsat dataset had threemajor advantages, its resolution is 30m (60m for the period prior
to year 1999) compared to 250m for theMODIS dataset. Landsat bands cover awide range of the electromagnetic
spectrum allowing the extraction of more features than MODIS. Finally, the Landsat products go back to 1970 as
compared to the MODIS data which is available from 2000. On the down-side, the Landsat required far more
processing than the MODIS dataset. This was not just in terms of the large number of pixels to be processed, but
more so because the original proposal envisaged the use of available MODIS products which had already been
processed and were useable directly for the trend analysis. Furthermore, all of the MODIS products have been
validated through comprehensive field testing andmodelling. Therefore for every MODIS product, for example
net primary productivity (NPP) we had to derive a product from Landsat images going through numerous steps
and cross checks with other published results.

Another major challenge was the validation of the results which could not be done both due to the absence of
historical datasets and the lack of resources for field validation. We therefore relied on available literature. For
projects where literature was not available, for instance the land surface temperature outputs, we compared
with the station level air-temperature data and obtained the relationship. All results presented in the study are
therefore indices or approximations of actual values and error margins or uncertainties vary by each output.

Future Work

This study has led to new avenues of research being opened up. For instance, the existing analytic framework can
easily be extended to determine trends across other ecological processes such as how the change in vegetation
cover is impacting carbon or hydrologic services. The relationship between aerosols and rainfall as reported
by recent literature (50) is another avenue which remains to be explored. Aerosols are produced largely due to
anthropogenic activities such as burning of biomass, fuel and industrial processes.

The large baseline and derived datasets which have been created by this project can be used elsewhere.

In terms of further work, there is a good case for re-writing the code for speed optimisation: Creating small,
independent sub-routines and replacing repetitive tasks and loops with functions where possible would make
the code far more e�icient and re-useable. Using multi-core features built into R so it can be run on large server
clusters is another task which would greatly improve the performance of the existing scripts.

Layout of the Report

This technical report comprises of this introductory chapter which provides an overview of the study and broad
description of the methods and challenges faced. This is followed by three major chapters, each dealing with
one of the ecosystem services studied. These three chapters are largely self contained and comprise of three
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sections each. The first introduces the context and state of the science with respect to the ecosystem service
being covered. The methods section covers details of the data used, analytic process and refers to relevant
literature where appropriate. The results are presented at the end of each chapter along with discussions on the
relevance of the findings.
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Trends in Biodiversity Services

Introduction

Tropical forests support the highest concentration of biodiversity, with a few hotspots supporting a large number
of endemics (55). However, tropical forests are in turn seriously threatened by habitat destruction, leading to large
scale biodiversity loss (17,22). Historical analysis of extinctions, for a few groups of organisms, reveal extinction
rates for the last three centuries which are several hundred times higher than the rate expected on the basis of
the geological record (17). Projections of biodiversity loss also indicate that continued land-use change is the
most important driver which will push several species towards extinction (63). Adding to this global crisis is the
loss of biodiversity due to habitat fragmentation (20,35,44).

Understanding trends in forest cover loss (2,31,34,67,76,89) and fragmentation (77) has gained significant importance
in the last fewdecades. Studies analysing these trendshaveonlybeenpossiblewith the advancement in remotely
sensed products and so�ware to analyse large volumes of data (5,25,26,65,95). Currently it is estimated that nearly
1.71 million km2 (77) to 2.3 million km2 (31) of forest has been lost between 2000 and 2012. Riitters et al. (77) found
that rate of loss of forest interior compared to the rate of loss of all forest area was 3.1 times higher on the global
scale, with a net loss of 3.76million km2 of interior forest areas between 2000 and 2012. Further studies on trends
in biodiversity loss indicate that, land-use change will probably have the largest e�ect, followed by climate
change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration (85).

In India, it is estimated that nearly 0.89 to 0.63 million km2of forest was lost between 1880 and 2010. More
recently, decadal trends between 1985 and 2005 shows that nearly 0.36 million km2of forest cover was lost
across the country, with deciduous broad leaf forest showing the highest percentage of loss during the above
mentioned time period (81). In the Western Ghats, one of the 36 global biodiversity hotspots (55), nearly 40,000
km2 of forests was lost during the period 1973 -1995. During the same period dense forest was reduced by 33.2%
and open forests decreased by 33.2%, also degraded forest increased indicating high levels of fragmentation (41).

Associations between habitat loss, land-use change and biodiversity loss have contributed towards the develop-
ment of remotely sensed indices to characterise biodiversity (6,18,45,94). Remotely sensed indices or surrogates of
biodiversity provides a rigorous and comparable basis for understanding vegetation heterogeneity–diversity
relationships, and o�er a powerful tool for monitoring and understanding the responses of biodiversity and
ecosystems to the changing environment. Recent studies have shown that monitoring productivity and land-
cover changes through time has the potential to identify not only areas undergoing forest cover loss but also to
indicate areas where potential biodiversity changemay be occurring (18,74). Studies have also shown the utility of
using automated analysis of multi-date NDVI data in the real time monitoring of vegetation change. These assist
in identifying areas where biodiversity losses can be expected (76).

Studies in the Western Ghats have shown the utility of using NDVI, a remotely sensed product of greenness,
to characterise areas of high and low species richness of trees in tropical forests (6). Krishnaswamy et al. (45)

demonstrated the utility of using multi-date NDVI data to quantify variability in forest types across a moisture
gradient and also its ability to capture floristic diversity. Additionally their multi-date NDVI distance measure
provides a continuous ecological scale, which complements existing forest classification systems. While this
is seen as a superior approach (78) as compared to using single date NDVI as a surrogate for biodiversity, the
procedure followed requires a reference set of sites to develop a surrogate for tree diversity. Implementing this
approach might be constrained to landscapes where ground truth data is available.

As a surrogate for trends in biodiversity we studied trends in habitat quality measured by NDVI in the Western
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Ghats for the period 2000 to 2013. Ourmain objective was to analyse the changes in NDVI, a proxy for biodiversity
services, as a response to conservation andmanagement interventions undertaken in the Western Ghats key
biodiversity areas by CEPF and other organisations. Wemake use of a time series of satellite images, remove the
influence of climatic variable like temperature and rainfall and then derive trends to estimate observed changes
in the quality of habitat due to anthropogenic factors.

Methods

We used remotely sensed data for analysing trends in habitat quality from two sources, Moderate Resolution
Imaging Spectroradiometer (MODIS) and Landsat. NDVI is a measure of greenness and therefore changes in
NDVI represent an alteration in quality of the habitat which can be associated with biodiversity services (6).
Earlier studies have shown that the NDVI and heterogeneity in NDVI can be used to characterise tree species
richness (6,45). To explore the relationship between NDVI and faunal diversity we calculated species richness of
mammals, reptiles and amphibians from the IUCN redlist data set at a spatial resolution of 5 km2 for the entire
Western Ghats. We plotted this data against the median NDVI calculated for each pixel frommonthly maximums
across the years 2000 to 2013.

MODIS dataset

We used MOD13Q1 product fromMODIS for this study. MOD13Q1 provides the average NDVI data at 250m res-
olution, every 16 days. This product also includes two quality assessment layers, Quality detailed QA layer
(unit- Bits) and pixel reliability summary QA layer (unit- Rank), which can be used to evaluate the quality of
each pixel. We found that the outputs generated by considering pixel ranks 0 –Good data and 1 –Marginal data,
available in pixel reliability layer, were highly comparable with outputs generated using flags good and highest
quality from detailed QA layer. As pixel reliability layer was rank based and simpler to use, we preferred this
over detailed quality layer for removing pixels with bad quality such as those a�ected by cloud and aerosols
fromMOD13Q1 product. The resulting 16 days product was gap filled using Harmonic Analysis of Time Series
(HANTS) algorithm (42,79) implemented in the r.hants module in GRASS7. Monthly maximum NDVI tiles were then
generated for all the years from 2000 to 2013. Further, we generated annual tiles from 16 day NDVI tiles with
the median NDVI values for each year. Land Surface Temperature (LST) during day time was obtained from the
MOD11A2 product, which is characterised by a temporal resolution of 8 days and spatial resolution of 1km. Using
quality control layer available with the product only the pixels with good quality algorithm results were retained
for further analysis. Quality assessed eight day products were then gap filled using r.hants module. Further, we
developed annual median temperature tiles from these eight day products for each year.

The TRMM data set was used to estimate the amount of rainfall received. We used the 3 hourly product 3B43 (V7)
to generate, daily, monthly and annual totals.

Landsat dataset

The pre-processed (see section 2.2 for additional details) Near Infra Red (NIR) and Red (R) bands from Landsat
for the period 2000-2013 were used to derive the NDVI layer using the formula:

NDV I =
(NIR−R)

(NIR+R)
(1)

We derived the maximumNDVI for each year using the tiles from post-monsoon season (October, November and
December).
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Analysis

Themonotonic trends in NDVI for the period 2000 to 2013 were estimated across the Western Ghats using Sen
slope (88). A dynamic linear model (DLM) (64) was fitted to remove the influence of climatic variables on the levels
of NDVI data. To do this we ran a regression of the time varying annual median NDVI against annual median
land surface temperature and rainfall. The LST was derived fromMODIS LST product and annual rainfall from
the TRMM product. We then used the Sen slope on the time varying intercepts from the resulting DLMmodel to
characterise the trends a�er removing the influence of temperature and rainfall,

NDVI

Annual median

 NDVI

LANDSAT HANTS

MODIS

Remove climatic

 influence (DLM)

Trend analysis

LST

Annual median

 LST

LANDSAT

MODIS

TRMM

Annual median

 TRMM

Figure 4: Procedure followed for deriving NDVI values as proxies for biodiversity services.

Results and Discussion

In the Western Ghats, areas with high NDVI also house higher diversity of amphibians, reptiles andmammals.
However this relationship is not linear, as NDVI tend to saturate at higher values. On the other hand, areas with
low NDVI correspond to areas with low biodiversity, whereas areas with high NDVI correspond to areas with
higher (Fig. 5). Earlier studies had demonstrated the utility of using NDVI to map biodiversity of trees in the
Western Ghats (6). Our results further strengthens the use ofNDVI tomonitor faunal diversity aswell asmonitoring
vegetation quality (96).

Our results show that when the trends are not corrected for climatic factors, biodiversity change was noticed in
only 15% of the Western Ghats (Table 1). However when corrected for temperature and rainfall nearly 50% of
the Western Ghats shows significant trend in biodiversity during the period 2000-2013 and 28% of the Western
Ghats showed decline for the same period. Spatial patterns in the trends are shown in Figure 6. Analysis of
trends at level of Key Biodiversity Areas identified by CEPF reveals that priority KBA’s showed greater decline in
biodiversity than those identified as non priority KBAs (Fig. 7).

Krishnaswamy et al. (2009) show that spatial variability in NDVI is a better approach to monitor biodiversity
using remotely sensed products. They develop an “eco-climatic” distance as a distance measure from the
wettest vegetation formations in the Western Ghats, adopting such an approach would require ground truth
data. While this approach of developing an index of eco-climatic distance might be better than using NDVI to
monitor biodiversity trends, it would require collecting ground information from reference plots representing
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Figure 5: Relationship between NDVI and faunal richness (mammals, amphibians and reptiles). The richness index is
derived by dividing total richness in each pixel by themaximum richness estimated across all the pixels. Greater the
index higher is the faunal diversity.

the wettest vegetation type in each landscape and this acts as a limiting constraint within the overall objective
of developing a monitoring framework.

Table 1: Gains and losses in NDVI within priority and non-priority KBAs. Raw gains/losses are without correcting for
climate e�ects. Gains/losses corrected for climate e�ects are reported for statistically significant trends at p 5 0.1.

Type of KBA Raw Gain Raw Loss Corrected Gain Corrected Loss

Priority (sq. km.) 4711 10227 3118 5246

Non-Priority(sq. km.) 4098 7175 2884 3554

Priority (% area) 32% 68% 37% 63%

Non-Priority (% area) 36% 64% 45% 55%

We compared the performance of MODIS NDVI with Landsat derived NDVI data. It was not possible to develop a
monthly time-series across all the years using Landsat files, hence we developed layers showing the maximum
NDVI that is accumulated in a year by using the NDVI values from post-monsoon season. A comparison of
maximum NDVI for a priority KBA, Haliayal, showed similar positive trends in NDVI for both MODIS and Landsat
datasets (Fig. 8) in the period 2000-2013. Although the trends followed a similar pattern, the slopes were not
the same between MODIS and Landsat NDVI for Bondla, a non-priority KBA (Fig. 9). This could be attributed to
the data loss we observed for a few pixels in Landsat images in Bondla during the post-monsoon season due
to extensive cloud cover for a few years. The results suggest that, although Landsat can be used along with
MODIS data for monitoring changes in NDVI, it is not possible to use them for large-scale monitoring, especially
in tropical forests, which experience high cloud cover.

In the Western Ghats several studies have been carried out, across varying time scales and spatial extents, to
assess the loss of forest cover (41,81). However our results not only capture loss of forest/vegetation cover it also
captures decline in the quality of the cover. We choose to present the results in terms of declines and increases
as our main objective was to link habitats and biodiversity. To demonstrate the utility of using MODIS tree cover

15



Figure
6:The

m
ap
show

how
the

vegetation
coverhaschanged

in
the

period
betw

een
2000

and
2013.The

m
apshighlighted

in
red

show
pixelsw

here
the

change
isstatistically

significantatp<=0.1.Those
in
blue

show
allpixels.

16



(a) Statistically significant raw (uncorrected for climate e�ects) and corrected trends in NDVI within
priority KBA and non-priority KBAs reported as area in sq.km.

(b) Statistically significant raw (uncorrected for climate e�ects) and corrected trends in biodiversity services in priority KBAs reported in
proportions.

(c) Statistically significant raw (uncorrected for climate e�ects) and corrected trends in biodiversity services in non-priority KBAs reported in
proportions.

Figure 7: Priority KBAs showedagreater loss and smaller gains in biodiversity services thannon-priority KBA regions.
Raw gains/losses are without correcting for climate e�ects. Gains/losses corrected for climate e�ects are reported
for statistically significant trends at p 5 0.1.

product (MOD44B) to monitor change in tree cover we compared the significant trends in tree cover with results
from Hansen et al. (34). Our results (Fig. 10) show a higher tree cover loss across the entire Western Ghats when
compared to Hansen et al. (34). Reddy et al. also show higher forest losses in India when compared to Hansen
et al. (31). Hansen et al define loss within a 30 meter pixel if the average amount of tree cover lost is 50% to 100%.
In our analysis we do not use any such criteria to report increasing or decreasing trends in tree cover and it
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Figure 8: A similar trend in NDVI was observed between Landsat and MODIS data for priority KBA Haliyal, Western
Ghats. Analysis of Sen slope suggested a similar positive trend with a slope of 0.08 to 0.09 over the period 2000-
2013. While the patterns were similar, the trends in both Landsat (p=0.59) and MODIS (p=0.38) were non-significant
at p<0.1.

captures not only loss but also deterioration in the quality of tree cover. Table 2 compares the Hansen tree cover
analysis and the MODIS tree cover analysis for priority and non priority KBA’s identified by CEPF.

Table 2: Hansen andMODIS tree cover datasets showed a similar gain in tree cover in KBAs.Whereas, Hansen dataset
showed greater losses in tree cover compared to MODIS data.

Type of KBA Hansen Tree Cover Analysis Modis Tree Cover Analysis
Corrected Gain Corrected loss Corrected Gain Corrected loss

Priority (% area) 0.16 0.40 0.16 0.15
Non-Priority (% area) 0.09 0.22 0.11 0.16

In conclusion, using NDVI to monitor biodiversity change is a better approach when field data is not available.
It not only shows potential areas undergoing biodiversity changes, it also indicates areas where vegetation
changes are occurring. The trends we report are due to non climatic variables and can be directly attributed to
anthropogenic interventions and reveal both loss/gain and deterioration/improvements. Our results also show
that high resolution Landsat data can be used for a similar trend analysis, however temporal coverage of Landsat
is a major constraint in large scale applications. Both high spatial and high temporal resolution imageries are
needed to accurately discern trends in forest fragmentation and degradation. Neither Landsat nor MODIS meet
both these requirements.
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Figure 9: A similar trend in NDVI was observed between Landsat and MODIS data, however, the Sen slope values for
NDVI trend across the years were di�erent for non-priority KBA Bondla, Western Ghats. The di�erences could be a
result of data loss in Landsat tiles due to high cloud cover for some of the years in post-monsoon season. While the
patterns were similar, the trends in both Landsat (p=0.21) and MODIS (p=0.9) were non-significant at p<0.1.

Figure 10: Trends in tree cover derivedusingMODISproduct (MOD44B) showedahigher tree cover loss in theWestern
Ghats compared to Hansen tree cover data.
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Trends in hydrologic services

Introduction

Hydrologic services refer to a gamut of regulatory as well as provisioning services o�ered by ecosystems with
respect to water. This includes its retention as soil moisture, recharge of ground water, discharge as streamflow
or evapotranspiration. Determining the impact of restoration and conservation e�orts on provisioning of water
can provide the basis of a convincing economic argument in favour of protecting catchments in their natural
forms. Recent research in the Western Ghats shows that forests converted to plantations or degraded tend to
show an overall increase in discharge (46) and reduction in hydrologic conductivity, or recharge (9). While most
hydrologic services are associated with quantum, duration and quality of stream flow, green water fluxes are
also recognised as an important component in the overall water budget and are known to sustain a range of
ecosystem services (21,45).

Hydrological services are arguably the most valued services from natural ecosystems. This is more so for agricul-
tural societies, such as India. The widespread impression that forests provide us clean and continuous supplies
of water oversimplifies complex interactions between vegetation, geomorphology and climate. Land cover plays
a significant role in determining the quantity of fresh water discharge and its quality, even if geomorphology
and climatic conditions remain similar.

However, measuring discharges across large and di�icult terrain poses huge financial and logistic challenges.
Much like other parts of the country, the Western Ghats are poorly gauged and field measurements of hydro-
meteorological parameters are sparse.

The Western Ghats are important from the perspective of hydrological services forming the headwaters of six
major river basins (97). Recent estimates suggest that the region “will have 81 million people with insu�icient
water by 2050” (51).

Discharge or streamflow, re-charge and soil moisture together form the blue-water component of the water
balance. Theothercomponent - green-water, refers to theproportionofprecipitationwhich is circulatedback into
the atmosphere through evapotranspiration. This can be further broken down into a non-productive component
of evaporation and a productive component of transpiration through plants. Non-productive green water or
evaporation is the sum of water lost through surface evaporation fromwater bodies and soil as well as canopy
interception.

The question we pose in this section is, what are the trends in hydrological services in terms of blue water during
the period from 2000 to 2013 across the Western Ghats? We further ask what proportion of these trends can be
attributed to non-climatic processes, i.e. factors other than temperature?

Methods

Remote sensing has long been used to derive indices and estimates of hydro-meteorological parameters such
as precipitation, actual and potential evapotranspiration heat flux and soil moisture. While this does not replace
field measurements, it provides us a handle on large scale trends across numerous parameters and can be tied
to changes in land cover, such as modification of natural forest to other land uses.

There are a number of approaches to measure evapotranspiration from remote sensing. Most of these are based
onmeasurements of heat flux from the thermal bands of imageries. We utilised an approach proposed in 2001
by Zhang et al. (98) wherein a proxy for soil moisture is used as a parameter to derive evapotranspiration (19).
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Figure 11: Procedure followed for deriving blue water values as proxies for hydrologic services.

Three specific estimates are required in order to estimate trends in green and blue water from a catchment:

1. Approximation of actual evapotranspiration.

2. Approximation of soil moisture at the root zone and

3. Approximation of at-surface temperatures and emissivity which is a prerequisite to the above two deriva-
tions.

The overall framework for the analysis is the water balance equation:

P = ET +R+D +∆S (2)

where P is precipitation, ET is evapotranspiration, R is surface runo� or streamflow, D is ground water recharge
and ∆S is change in soil water storage. This can be simplified to

P = ET +Q +∆S (3)

where,Q = R+D or total runo� which includes surface, base flows and interflow (99). The latter term is assumed
to be a constant over annual time periods leading to the simplified equation:

P = ET +Q (4)

Therefore, if we can derive the term ET (or green water) and assume the term ∆S to be a constant, we are in a
position to determine the proportion of blue water Q. Zhang et al. 98 demonstrated that ET can be calculated
based onmeasurements of potential evapotranspiration (Eo ) and a parameterwwhich is a coe�icient for plant
available moisture at the root zone as per the equation:

ET

P
=

1+w Eo
P

1+w Eo
P +
(
Eo
P

)−1 (5)

We used Landsat imageries and a modules and calculations using the raster package in R and GRASS GIS to
derive the blue and green water for each year. Eo values were taken from available MODIS based products. The
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value for thew parameter was estimated by deriving the Temperature Vegetation Dryness Index (TVDI) based on
publications by Sandholt et al. 86 andSon et al. 92 . In order to proceedwith the analysis a number of intermediate
layers were derived. These were based on remotely sensedmeasurements of surface temperature and emissivity
which can be calculated directly from the thermal band of satellite imageries as per Chander et al. 14 . Trends for
these were then calculated using Sen slopes as described in the methods presented earlier.

An independent set of blue water estimates was derived using MODIS monthly evapotranspiration products,
MOD16A2, available at 1km resolution, and TRMM rainfall data. We calculated annual total evapotranspiration
for each year from 2000 to 2013 and subtracted this from annual total rainfall to obtain blue water for each year.
This was later expressed as percentage of total rainfall and analysed for trend using Sen slopes and DLM.

Results and Discussion

Our results suggest that there has been a 43% increase in area where blue water, i.e. discharge and recharge,
has increased. 48% of the Western Ghats remains unchanged and 8% of the area shows a declining trend. The
spatial patterns in the trends are shown in Fig. 12.

Table 3: Gains and losses in blue water trends in priority and non-priority KBAs. Raw gains/losses are without cor-
recting for climate e�ects. Gains/losses corrected for climate e�ects are reported for statistically significant trends
at p 5 0.1.

KBA Raw Gain Raw Loss Corrected Gain Corrected Loss

Priority KBA (sq. km.) 12030 5182 5503 608

Non-Priority KBA (sq. km.) 8498 4509 2922 208

Priority (% area) 69.89% 30.11% 90.05% 9.95%

Non-Priority (% area) 65.33% 34.67% 93.35% 6.65%

The observed trends were validated against field measurements of stream discharge from four catchments in
the Western Ghats. These were from di�erent regions, Anjanari representing the northern Western Ghats in the
state of Maharashtra, Ganjim central Western Ghats in the state of Goa, Santeguli and Sakleshpur in the southern
state of Karnataka. They also represented di�erent rainfall regimes. While the comparison shows a consistent
bias, the trends shown by the blue water estimates are consistent with field observations. This validates our
approach (Fig. 15).

We compared Landsat derived blue water values with blue water values derived using MODIS. Both data sets
showed a strong significant correlation with each other, with R2 values ranging from 0.44 to 0.68 (p <0.001)
(Fig. 16). However, the temporal coverage by Landsat images was poor compared with MODIS data. Hence we
used MODIS derived blue water data for trend analysis.

Results presented here indicate an increase in blue water availability from a large proportion of both priority
KBA (89%) and non-priority KBA (93%) (Fig. 13). However, the total amount of blue water provided by priority
KBAs was almost twice that of non-priority KBAs across the Western Ghats (Fig. 14). This implies additional
water was available through streamflow into reservoirs and rivers, soil moisture and recharge of ground water.
Given the importance of the Western Ghats as headwaters of important rivers, our results indicate a positive
trend. There are twomajor processes that could contribute to the increased blue water flows. 1) The increase in
total precipitation in the region over the study period and 2) a decrease in the green water component of the
annual water budget. The latter would indicate a reduction in the total amount of “productive green water” or
reduction in transpiration implying reduced green forest cover. However our observations on trends in NDVI
over the same period show that there has been an increase in overall productivity in the Western Ghats. Further
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(a) Statistically significant raw (uncorrected for climate e�ects) and corrected trends in priority KBA and
non-priority KBAs reported as area in sq.km.

(b) Statistically significant raw (uncorrected for climate e�ects) and corrected trends in blue water in priority KBAs reported in proportions.

(c) Statistically significant raw (uncorrected for climate e�ects) and corrected trends in blue water services in non-priority KBAs reported in
proportions.

Figure 13: Priority KBAs showed a greater increase in hydrologic services than non-priority KBA regions. Raw gain-
s/losses are without correcting for climate e�ects. Gains/losses corrected for climate e�ects are reported for statis-
tically significant trends at p 5 0.1.

work is required to determine the extent to which changes in precipitation have contributed to the increased
blue water trends observed in the region.
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Figure 14: Priority KBAs had greater amounts of blue water than non-priority KBAs. The blue water is shown as aver-
age (mm) per year across the period 2000 to 2013.

(a) Trends were statistically significant at p<0.1 for both MODIS
(p=0.024) and for field measurements (p=0.013)

(b) Trends were statistically significant at p<0.1 for both MODIS
(p=0.047) and for field measurements (p=0.10)

(c) Trends were statistically significant at p<0.1 for MODIS (p=0.011)
but not for field measurements (p=0.84)

(d) Trendswerenot statistically significant atp<0.1 forMODIS (p=0.59)
and neither for field measurements (p=0.19)

Figure 15: Validation of blue water trends based on MODIS, against field measurements of discharge at four catch-
ments in the Western Ghats.
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Figure 16: A very strong correlation was observed between MODIS derived blue water and Landsat derived blue wa-
ter.
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Trends in Carbon Services

Introduction

Tropical forests have been recognised as significant sinks of carbon (62,66) with the current carbon stock esti-
mated to be 471 Pg with a stock density of 242 Mg C ha-1 (62). Pan et al. (62) estimated an average annual carbon
sequestration rate of 1.2 Pg C yr-1 for tropical forests between the years 1990 and 2007. However, they observed
23% reduction in carbon sink between 2000 and 2007 which reduced from 1.3 Pg C yr-1 for 1990 to 1999 to 1.0
Pg C yr-1 for 2000–2007. They attributed this reduction to deforestation and fragmentation of intact forests
between 2000 and 2007. Over the last few decades tropical forests have experienced rampant deforestation
and conversion of forests to non-forestry activities (4,24,41,91). This significantly contributes to emission of CO2,
reduced carbon stock, reduced soil carbon assimilation, and global warming (38,60,90). There is an immediate
need to understand CO2 dynamics in terrestrial ecosystems for developing global as well as regional policies for
climate change mitigation and carbon sequestration (73).

Primary productivity is a term used in ecology to refer to CO2 that gets assimilated as biomass in an ecosystem.
Net Primary Productivity (NPP) is considered as a measure of total carbon sequestered/ assimilated a�er
accounting for the maintenance losses (12). Increase in NPP suggests a higher rate of CO2 sequestration in a
system in which case that system acts as a major carbon sink. Similarly, a decrease in NPP suggests reduced
rate of sequestration in an ecosystem. Hence, NPP trend analysis is an important step in understanding the
ecosystem carbon dynamics and e�ect of deforestation or management interventions (73).

We studied carbon sequestration trends, using NPP, in the Western Ghats landscape for the period 2000 to 2013.
Our main objective was to analyze the changes in carbon services, mainly carbon sequestration, as a response
to conservation andmanagement interventions undertaken in the sWestern Ghats key biodiversity areas by
CEPF and other organisations.

The methodology used here and results obtained, can be extended further to evaluate the e�ects of climate
change, and to identify areas that act as sources and sinks of CO2 in the Western Ghats. NPP is very sensitive
to CO2 concentrations (100). Increased CO2 removes the light related photosynthesis constraint experienced by
plants resulting in increased NPP (52). However, this relationship is not linear. Increase in air temperature and
droughts, which are the resultants of increase in CO2 /global warming, can result in higher respiration losses
from forests, and thus change the nature of forests from carbon sinks to carbon sources (13,101). Under these
circumstances a study of CO2 dynamics in terrestrial ecosystems with respect to changes in other climatic and
anthropogenic variables, and knowing the source and sinks of CO2 can help in better management of these
ecosystems and in policy formulation.

Methods

We used remotely sensed data, which is among the only sources of temporal information needed to analyse
trends in carbon sequestration. Data from both MODIS and Landsat was used and the performance of each was
compared in terms of spatial and temporal resolution and accuracy.

MODIS dataset

The MOD17A3 product was used from the MODIS dataset for this study. MOD17A3 provides NPP data at 1km
resolution which is estimated on yearly basis. This product has been validated using field data and found to
be accurate in measuring NPP at global and regional scales (61,83). We estimated the monotonic trends in NPP
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Figure 17: Procedure followed for deriving net primary productivity values as proxies for carbon services.

for the period 2000 to 2013 across the Western Ghats using Sen slope (88). A dynamic linear model (DLM) was
fitted to remove the influence of climatic variables on the levels of NPP data by regressing the time varying NPP
against annual summer temperature (March, April, May) derived fromMODIS LST (MOD11A2) day time layers.
We used summer temperature as it is known to increase the respiration rate dramatically and thereby reduce
NPP (93).

Estimating Net Primary Production (NPP) from Landsat

Estimation of NPP from Landsat is largely based on the light use e�iciency (LUE) model (53,54). In this model,
gross primary productivity (GPP) is a function of absorbed photosynthetically active radiation (APAR) and a LUE
coe�icient (ε), and NPP is calculated from GPP a�er deducting the respiration losses (Γ) for maintenance;

GPP = ε ∗APAR

NPP = GPP − Γ (6)

The LUEmodel is conceptually simple and can be easily parameterised with remote sensing data (3,27,28,82,84).

APAR is o�en represented as a product of fraction of photosynthetically active radiation (ƒPAR) as shown below,

APAR = f PAR ∗PAR (7)

where, PAR is the total incident photosynthetically active radiation.

Several studies have shown that ƒPAR can be estimated from remotely sensed images and it is correlated to
spectral vegetation indices. ƒPAR is considered approximately equal to the normalised di�erence vegetation
index (NDVI) (27,56,58,84). And hence equation 7 can be rewritten as,

APAR = NDV I ∗PAR & there f ore

GPP = ε ∗NDV I ∗PAR (8)
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We used maximum NDVI value observed in the study area to estimate NPP. Maximum NDVI was calculated
by extracting maximum pixel value across post-monsoon season (October, November and December), which
is the peak period for biomass production in plants. We calculated instantaneous net radiation (INR) for the
post-monsoon season using i.eb.netradmodule in GRASS. PARwas calculated as 0.45 of INR (36,84). Wemultiplied
maximum NDVI with maximum PAR estimated to obtain highest possible APAR in that season in the landscape.

MODIS derived landcover maps (MCD12Q1) were used to identify vegetation types in each year. We restricted our
NPP analysis to the period from 2001 to 2012 which corresponds to the availability of the MODIS landcover maps.
We developed a APAR conversion e�iciency (ε) map by using the ε values described in MODIS NPP products
(MOD17) for each vegetation type (36). ε was then multiplied with APAR to obtain GPP for each year. We then
analysed the trend in these estimatedmaximumpossible GPP values to know trends in CO2 sequestration across
the Western Ghats.

Results and Discussion

The estimated range of MODIS NPP for the entire Western Ghats for the period 2000 to 2013 ranged between
0.01 and 1.38 kg Cm-2 with a median of 0.6 kg Cm-2. Field measurements of NPP in the Western Ghats range
between 0.03 and 2.2 kg C m-2 (7,8). Comparison of estimates from remotely sensed MODIS product and field
measurement from Bhat et al. (7), Bhat and Ravindranath (8) shows that remotely sensed data estimates, 0.04 to
0.6, are within acceptable ranges obtained from field studies.

Our results show that if not corrected for temperature, the overall trend appears to be negative. However when
corrected for climatic variables the trend is significantly positive for nearly 40% of the Western Ghats (Fig. 18).

Table 4: Gains and losses in NPP trends within priority and non-priority KBAs. Raw gains/losses are without correct-
ing for climate e�ects. Gains/losses corrected for climate e�ects are reported for statistically significant trends at
p 5 0.1.

Type of KBA Raw Gain Raw Loss Corrected Gain Corrected Loss

Priority KBA (sq.km) 6828 7773 7029 1390

Non-Priority KBA (sq.km) 5604 5478 6576 664

Priority KBA (% area) 47.00% 53.00% 83.00% 17.00%

Non-Priority KBA (% area) 51.00% 49.00% 91.00% 9.00%

Several other studies have also found an increase in NPP globally as well as in tropical ecosystems (37,58,72). A
strong correlation has been found between increase in NPP carbon sink and enhancement in global carbon
pool (15,59,71). This suggests the importance of green vegetation in mitigating the e�ects of climate change.
However, we found that when not corrected for e�ects of temperature there was a negative trend in NPP. An
increase in air temperature is known to induce higher respiration losses in plants which leads to reduced
NPP (93,100). Thus both enhanced carbon and temperature might be playing a role in determining NPP carbon
sink in the Western Ghats. With finer level data and images, this study design adopted by us could be useful in
monitoring climate change and its influence on tropical ecosystems.

Priority KBAs identified by CEPF showed greater increase in carbon services than those identified as non-priority
KBAs (Fig. 19). The total amountof carbon sequestered in priorityKBAswas almost twice thatof non-priorityKBAs
(Fig. 20). Better protection to priority KBAs under various conservation projects and management interventions
could be one of the factors that contributed towards increased carbon sequestration. About 56% of carbon is
stored in biomass in tropical forests (62). The reduced rate of removal of biomass in the form of fuel-wood, timber,
litter etc., could have facilitated greater carbon storage in the form of biomass in these priority sites. It is also

29



Figure
18:The

m
ap
show

how
trends

in
netprim

ary
productivity

as
an
index

ofcarbon
sequestration

overthe
period

from
2000

to
2013.The

m
aps

highlighted
in
red

show
pixels

w
here

the
change

is
statistically

significantatp<=0.1.Those
in
blue

show
allpixels.

30



important to note that, majority of the forests in the Western Ghats are relatively younger forests. The younger
forests have a greater potential to sequester carbon compared to old forests (62).

We found a correlation between MODIS annual NPP and Landsat derived potential maximum GPP (Fig. 22).
Although higher than MODIS the estimates of GPP from Landsat shows similar trends across years. The higher
Landsat estimates are probably because GPP is the total carbon sequestered and does not account for the
respiration losses associated with tissue maintenance and growth. A general assumption is that 40% of the
GPP is converted into NPP annually (80). However, the NPP conversion e�iciency varies largely with vegetation
type and the age of the stand. Hence, we did not convert Landsat GPP into NPP. A fine scale land-cover map
and standardisation of correlation between GPP and NPP at field level can help in improving the e�iciency of
Landsat images in estimating NPP.

AlthoughMODIS images cannot capture spatial details as well as Landsat, availability of MODIS product through-
out the year at regular intervals makes it a superior product in estimating average annual productivity of a
site. Additionally the MODIS product includes loss of carbon due to various climatic factors (36). While Landsat
provides superior spatial resolution the temporal coverage is very poor; for the entire Western Ghats temporal
data loss was nearly 26%, whereas for few sites the loss was as high as 92% (h146,v50). Further there was loss in
information due to cloud cover and striping due to SLC failure. Other studies also have established the usefulness
of MODIS products in estimating annual productivity and inter-annual variability in NPP (70,93).

We conclude that MODIS NPP products can be used to monitor improvements in carbon sequestration in
ecosystems as a response to conservation/anthropogenic factors at a given site. These monitoring tools are
cost e�ective and perform better over other freely available remotely sensed products, including Landsat. The
study design andmethodologies adopted can also be used e�ectively to monitor impact of climate change on
ecosystem processes and services. Further data andmonitoring of priority sites studied here, will be crucial in
predicting future changes and developing strategies to mitigate the e�ects of climate change in the Western
Ghats.

The analysis presented in this report could be further refined by including phenological datasets, additional
covariates like aerosols and high resolution rainfall, all these can be derived fromMODIS products. The current
approach sets up a frame work for advanced analysis to look at lagged response in three services as covariates
evolve in time. It also provides the inputs required to detect break points, or points in time where drastic shi�s
in trends have been observed .

31



(a) Statistically significant raw (uncorrected for climate e�ects) and corrected trends in priority KBA and
non-priority KBAs reported as area in sq.km.

(b) Statistically significant raw (uncorrected for climate e�ects) and corrected trends in carbon services in priority KBAs reported in propor-
tions.

(c) Statistically significant raw (uncorrected for climate e�ects) and corrected trends in carbon services in non-priority KBAs reported in
proportions.

Figure 19: Priority KBAs showed a greater increase in carbon services than area under non-priority KBA. Raw gain-
s/losses are without correcting for climate e�ects. Gains/losses corrected for climate e�ects are reported for statis-
tically significant trends at p 5 0.1.
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Figure 20: Priority KBAs showed greater amounts of carbon sequestered compared to non-priority KBAs. Total
amount of carbon sequestered is shown in megatons (Mt) summed across the period 2000 to 2013.

Figure 21: Comparison of trends in carbon services in the Cardamomhills priority KBAmeasured byMODIS and Land-
sat. Landsat data for Cardamom hills has 5 missing years, and 3 consecutive years with no data.

Figure 22: Comparison of trends in carbon services in a priority (Haliyal RF) and a non-priority KBA (Bondla WLS)
measured by MODIS and Landsat. The Landsat dataset for Haliyal RF and Bondla WLS has only one missing year
(2010).

33



Bibliography

[1] Abrams M. 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data
products for the high spatial resolution imager on NASA’s Terra platform. International Journal of Remote
Sensing 21: 847–859.
URL http://www.tandfonline.com/doi/abs/10.1080/014311600210326

[2] Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP. 2002. Determination of
deforestation rates of the world’s humid tropical forests. Science 297: 999–1002. ISSN 0036-8075, 1095-
9203.
URL http://www.sciencemag.org/content/297/5583/999

[3] Ahl DE, Gower ST, Mackay DS, Burrows SN, Norman JM, Diak GR. 2005. The e�ects of aggregated land cover
data on estimating NPP in northern Wisconsin. Remote Sensing of Environment 97: 1–14.
URL http://www.sciencedirect.com/science/article/pii/S0034425705000817

[4] Alencar A, Asner GP, Knapp D, Zarin D. 2011. Temporal variability of forest fires in eastern Amazonia.
Ecological Applications 21: 2397–2412.
URL http://www.esajournals.org/doi/abs/10.1890/10-1168.1

[5] Asner GP. 2014. Satellites and psychology for improved forest monitoring. Proceedings of the National
Academy of Sciences 111: 567–568.
URL http://www.pnas.org/content/111/2/567.short

[6] Bawa K, Rose J, Ganeshaiah KN, Barve N, Kiran MC, Umashaanker R. 2002. Assessing biodiversity from
space: an example from the Western Ghats, India. Conservation Ecology 6: 7.
URL http://www.researchgate.net/profile/Narayani_Barve/publication/42763983_

Assessing_Biodiversity_from_Space_An_Example_from_the_Western_Ghats_India/links/

02bfe5148a8bc5994b000000.pdf

[7] Bhat DM,Murali KS, RavindranathNH. 2003. Carbon stock dynamics in the tropical rain forests of the Uttara
Kannada district, Western Ghats, India. International Journal of Environment and Pollution 19: 139–149.
URL http://www.inderscienceonline.com/doi/abs/10.1504/IJEP.2003.003746

[8] Bhat DM, Ravindranath NH. 2011. Above-ground standing biomass and carbon stock dynamics under a
varied degree of anthropogenic pressure in tropical rain forests of Uttara Kannada district, Western Ghats,
India. Taiwania 56: 85–96.
URL http://tai2.ntu.edu.tw/taiwania/pdf/tai.2011.56.85.pdf

[9] Bonell M, Purandara BK, Venkatesh B, Krishnaswamy J, Acharya HAK, Singh UV, Jayakumar R, Chappell N.
2010. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of
India: Implications for surface and sub-surface hydrology. Journal of Hydrology 391: 47–62.
URL http://www.sciencedirect.com/science/article/pii/S0022169410004178

[10] Broich M, Hansen MC, Potapov P, Adusei B, Lindquist E, Stehman SV. 2011. Time-series analysis of multi-
resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. Inter-
national Journal of Applied Earth Observation and Geoinformation 13: 277–291.
URL http://www.sciencedirect.com/science/article/pii/S0303243410001340

34



[11] Calder C, Lavine M, Müller P, Clark JS. 2003. Incorporating multiple sources of stochasticity into dynamic
population models. Ecology 84: 1395–1402.
URL http://www.esajournals.org/doi/abs/10.1890/0012-9658(2003)084%5B1395:IMSOSI%

5D2.0.CO%3B2

[12] Cao M, Prince SD, Small J, Goetz SJ. 2004. Remotely sensed interannual variations and trends in terrestrial
net primary productivity 1981–2000. Ecosystems 7: 233–242.
URL http://link.springer.com/article/10.1007/s10021-003-0189-x

[13] Cao M, Woodward FI. 1998. Net primary and ecosystem production and carbon stocks of terrestrial
ecosystems and their responses to climate change. Global Change Biology 4: 185–198.
URL http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2486.1998.00125.x/full

[14] Chander G, Markham BL, Helder DL. 2009. Summary of current radiometric calibration coe�icients for
Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment 113: 893–903.
URL http://www.sciencedirect.com/science/article/pii/S0034425709000169

[15] Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara
A, others. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003.
Nature 437: 529–533.
URL http://www.nature.com/nature/journal/v437/n7058/abs/nature03972.html

[16] De Beurs KM, Henebry GM. 2005. A statistical framework for the analysis of long image time series.
International Journal of Remote Sensing 26: 1551–1573.
URL http://www.tandfonline.com/doi/abs/10.1080/01431160512331326657

[17] Dirzo R, Raven PH. 2003. Global state of biodiversity and loss. Annual Review of Environment and Resources
28: 137–167.
URL http://dx.doi.org/10.1146/annurev.energy.28.050302.105532

[18] Duro DC, Coops NC, Wulder MA, Han T. 2007. Development of a large area biodiversity monitoring system
driven by remote sensing. Progress in Physical Geography 31: 235–260. ISSN 0309-1333.
URL http://ppg.sagepub.com/cgi/doi/10.1177/0309133307079054

[19] Elmqvist T, Tuvendal M, Krishnaswamy J, Hylander K. 2010. Ecosystem services: managing trade-o�s
between provisioning and regulating services. In Kumar P, Wood M (eds.) Valuation of regulating services
of ecosystems: methodology and applications. London: Routledge.

[20] Fahrig L. 2003. E�ects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and
Systematics 34: 487–515.
URL http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132419

[21] Falkenmark M, Rockström J. 2006. The new blue and green water paradigm: Breaking new ground for
water resources planning andmanagement. Journal of Water Resources Planning and Management 132:
129–132.
URL http://ascelibrary.org/doi/10.1061/(ASCE)0733-9496(2006)132%3A3(129)

[22] Gaston KJ, Blackburn TM, Goldewijk KK. 2003. Habitat conversion and global avian biodiversity loss.
Proceedings of the Royal Society B: Biological Sciences 270: 1293–1300. ISSN 0962-8452, 1471-2954.
URL http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2002.2303

35



[23] GDAL Development Team. 2014. GDAL: GDAL - Geospatial Data Abstraction Library.
URL http://www.gdal.org/index.html

[24] Geist HJ, Lambin EF. 2002. Proximate causes and underlying driving forces of tropical deforestation.
BioScience 52: 143–150.
URL http://bioscience.oxfordjournals.org/content/52/2/143.short

[25] Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S. 2008. Measuring and modelling biodiversity from
space. Progress in Physical Geography 32: 203–221.
URL http://ppg.sagepub.com/content/32/2/203.abstract

[26] Gillespie TW, Willis KS, Ostermann-Kelm S. 2015. Spaceborne remote sensing of the worlds protected
areas. Progress in Physical Geography 39: 388–404.
URL http://ppg.sagepub.com/content/39/3/388.abstract

[27] Gitelson AA, Peng Y, Masek JG, Rundquist DC, Verma S, Suyker A, Baker JM, Hatfield JL, Meyers T. 2012.
Remote estimation of crop gross primary production with Landsat data. Remote Sensing of Environment
121: 404–414.
URL http://www.sciencedirect.com/science/article/pii/S0034425712001101

[28] Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C. 2001. Net primary production and carbon
allocation patterns of boreal forest ecosystems. Ecological Applications 11: 1395–1411.
URL http://www.esajournals.org/doi/abs/10.1890/1051-0761(2001)011%5B1395:NPPACA%

5D2.0.CO%3B2

[29] Hansen MC, DeFries RS. 2004. Detecting long-term global forest change using continuous fields of tree-
cover maps from 8-km Advanced Very High Resolution Radiometer (AVHRR) data for the years 1982–99.
Ecosystems 7: 695–716.
URL http://link.springer.com/article/10.1007/s10021-004-0243-3

[30] HansenMC, DeFries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg RA. 2003. Global percent tree cover
at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm.
Earth Interactions 7: 1–15.
URL http://journals.ametsoc.org/doi/abs/10.1175/1087-3562(2003)007%3C0001%

3AGPTCAA%3E2.0.CO%3B2

[31] Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ,
Loveland TR. 2013. High-resolution globalmaps of 21st-century forest cover change. Science 342: 850–853.
URL http://www.sciencemag.org/content/342/6160/850.short

[32] Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ,
Loveland TR. 2013. Supplementary Materials for .
URL http://www.yadvindermalhi.org/uploads/1/8/7/6/18767612/hansen_2013_sm.pdf

[33] Hansen MC, Roy DP, Lindquist E, Adusei B, Justice CO, Altstatt A. 2008. Amethod for integrating MODIS and
Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of
Environment 112: 2495–2513.
URL http://www.sciencedirect.com/science/article/pii/S0034425707004774

36



[34] Hansen MC, Stehman SV, Potapov PV. 2010. Quantification of global gross forest cover loss. Proceedings of
the National Academy of Sciences 107: 8650–8655.
URL http://www.pnas.org/content/107/19/8650.short

[35] Hanski I. 2005. Landscape fragmentation, biodiversity loss and the societal response. EMBO Reports 6:
388–392. ISSN 1469-221X.
URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299308/

[36] Heinsch FA, Reeves M, Votava P, Kang S, Milesi C, ZhaoM, Glassy J, Jolly WM, Loehman R, Bowker CF, others.
2003. GPP and NPP (MOD17a2/A3) products NASA MODIS land algorithm. MOD17 User’s Guide : 1–57.
URL http://www.researchgate.net/profile/Joseph_Glassy/publication/252523420_Users_

Guide_GPP_and_NPP_(MOD17A2A3)_Products/links/550b4a790cf290bdc111e18f.pdf

[37] Hicke JA, Asner GP, Randerson JT, Tucker C, Los S, Birdsey R, Jenkins JC, Field C, Holland E. 2002. Satellite-
derived increases in net primary productivity across North America, 1982–1998. Geophysical Research
Letters 29: 69–1–69–4.
URL http://onlinelibrary.wiley.com/doi/10.1029/2001GL013578/pdf

[38] Houghton RA. 2007. Balancing the global carbon budget. Annual Review of Earth and Planetary Science 35:
313–347.
URL http://www.annualreviews.org/doi/abs/10.1146/annurev.earth.35.031306.140057

[39] Hu�man GJ, Bolvin DT. 2013. TRMM and other data precipitation data set documentation. NASA, Greenbelt,
USA : 1–40.
URL ftp://rsd.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf

[40] Irish RR, Barker JL, Goward SN, Arvidson T. 2006. Characterization of the Landsat-7 ETM+ automated
cloud-cover assessment (ACCA) algorithm. Photogrammetric Engineering & Remote Sensing 72: 1179–1188.
URL http://essential.metapress.com/index/A4G0927Q78254713.pdf

[41] Jha CS, Dutt CBS, Bawa KS, others. 2000. Deforestation and land use changes in Western Ghats, India.
Current Science 79: 231–237.
URL http://tejas.serc.iisc.ernet.in/currsci/jul252000/RESEARCH%20COMMUNICATIONS2.

pdf

[42] Jun W, Zhongbo S, Yaoming M. 2004. Reconstruction of a cloud-free vegetation index time series for the
Tibetan Plateau. Mountain Research and Development 24: 348–353.
URL http://www.bioone.org/doi/abs/10.1659/0276-4741(2004)024%5B0348:ROACVI%5D2.0.

CO%3B2

[43] Justice CO, Vermote E, Townshend JR, Defries R, Roy DP, Hall DK, Salomonson VV, Privette JL, Riggs G,
Strahler A. 1998. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for
global change research. Geoscience and Remote Sensing, IEEE Transactions on 36: 1228–1249.
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=701075

[44] Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Ockinger E, Partel M,
Pino J, Poyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Ste�an-Dewenter I. 2010. Habitat
fragmentation causes immediate and time-delayed biodiversity loss at di�erent trophic levels. Ecology
Letters 13: 597–605. ISSN 1461-023X.
URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871172/

37



[45] Krishnaswamy J, Bawa KS, Ganeshaiah KN, Kiran MC. 2009. Quantifying andmapping biodiversity and
ecosystem services: Utility of a multi-season NDVI based Mahalanobis distance surrogate. Remote Sensing
of Environment 113: 857–867.
URL http://www.sciencedirect.com/science/article/pii/S0034425708003696

[46] Krishnaswamy J, Bonell M, Venkatesh B, Purandara BK, Lele S, Kiran MC, Reddy V, Badiger S, Rakesh KN.
2012. The rain-runo� response of tropical humid forest ecosystems to use and reforestation in the Western
Ghats of India. Journal of Hydrology 472-473: 216–237.
URL http://www.sciencedirect.com/science/article/pii/S0022169412008190

[47] Krishnaswamy J, Halpin PN, Richter DD. 2001. Dynamics of sediment discharge in relation to land-use and
hydro-climatology in a humid tropical watershed in Costa Rica. Journal of Hydrology 253: 91–109.
URL http://www.sciencedirect.com/science/article/pii/S0022169401004747

[48] Krishnaswamy J, John R, Joseph S. 2014. Consistent response of vegetation dynamics to recent climate
change in tropical mountain regions. Global Change Biology 20: 203–215.
URL http://onlinelibrary.wiley.com/doi/10.1111/gcb.12362/full

[49] Krishnaswamy J, LavineM,Richter DD,Korfmacher K. 2000. Dynamicmodeling of long-term sedimentation
in the Yadkin River basin. Advances in Water Resources 23: 881–892.
URL http://www.sciencedirect.com/science/article/pii/S0309170800000130

[50] Lau KM, Kim KM. 2006. Observational relationships between aerosol and Asian monsoon rainfall, and
circulation. Geophysical Research Letters 33: n/a–n/a. ISSN 1944-8007. L21810.
URL http://dx.doi.org/10.1029/2006GL027546

[51] McDonald RI, Green P, Balk D, Fekete BM, Revenga C, Todd M, Montgomery M. 2011. Urban growth, climate
change, and freshwater availability. Proceedings of the National Academy of Sciences 108: 6312–6317. ISSN
0027-8424, 1091-6490.
URL http://www.pnas.org/content/108/15/6312

[52] Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL. 1993. Global climate change
and terrestrial net primary production. Nature 363: 234–240.
URL http://www.nature.com/nature/journal/v363/n6426/abs/363234a0.html

[53] Monteith JL. 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology 9:
747–766.
URL http://www.jstor.org/stable/2401901

[54] Monteith JL, Moss CJ. 1977. Climate and the e�iciency of crop production in Britain. Philosophical Transac-
tions of the Royal Society B: Biological Sciences 281: 277–294.
URL http://rstb.royalsocietypublishing.org/content/281/980/277.short

[55] Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conser-
vation priorities. Nature 403: 853–858. ISSN 0028-0836.
URL http://dx.doi.org/10.1038/35002501

[56] Myneni RB,WilliamsDL. 1994. On the relationshipbetween FAPARandNDVI. RemoteSensingofEnvironment
49: 200–211.
URL http://www.sciencedirect.com/science/article/pii/0034425794900167

38



[57] NASA. 2011. Landsat 7 Science Data Users Handbook. NASA.
URL http://landsathandbook.gsfc.nasa.gov/inst_cal/prog_sect8_2.html(7).

[58] Nemani RR,Keeling CD,HashimotoH, JollyWM,Piper SC, Tucker CJ,Myneni RB,Running SW. 2003. Climate-
driven increases in global terrestrial net primary production from 1982 to 1999. Science 300: 1560–1563.
URL http://www.sciencemag.org/content/300/5625/1560.short

[59] Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng W, Wullschleger SD,
Gunderson CA, Edwards NT, others. 2002. Net primary productivity of a CO2-enriched deciduous forest
and the implications for carbon storage. Ecological Applications 12: 1261–1266.
URL http://www.esajournals.org/doi/abs/10.1890/1051-0761(2002)012%5B1261:NPPOAC%

5D2.0.CO%3B2

[60] Osuri AM, Kumar VS, Sankaran M. 2014. Altered stand structure and tree allometry reduce carbon storage
in evergreen forest fragments in India’s Western Ghats. Forest Ecology and Management 329: 375–383.
URL http://www.sciencedirect.com/science/article/pii/S0378112714000632

[61] Pan Y, Birdsey R, Hom J, McCullough K, Clark K. 2006. Improved estimates of net primary productivity from
MODIS satellite data at regional and local scales. Ecological Applications 16: 125–132.
URL http://www.esajournals.org/doi/abs/10.1890/05-0247

[62] Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell
JG, others. 2011. A large and persistent carbon sink in the world’s forests. Science 333: 988–993.
URL http://www.sciencemag.org/content/333/6045/988.short

[63] Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JPW, Fernandez-Manjarres JF, Araujo MB,
Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guenette S, Hurtt GC, Huntington HP,
Mace GM, Oberdor� T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M. 2010. Scenarios for
global biodiversity in the 21st century. Science 330: 1496–1501. ISSN 0036-8075, 1095-9203.
URL http://www.sciencemag.org/cgi/doi/10.1126/science.1196624

[64] Petris G, Petrone S, Campagnoli P. 2009. Dynamic linear models. In Dynamic Linear Models with R, Use R.
Springer New York. ISBN 978-0-387-77237-0 978-0-387-77238-7, 31–84.
URL http://link.springer.com/chapter/10.1007/b135794_2

[65] Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. 2005. Using the satellite-derived NDVI
to assess ecological responses to environmental change. Trends in Ecology & Evolution 20: 503–510.
URL http://www.sciencedirect.com/science/article/pii/S016953470500162X

[66] Phillips OL, Malhi Y, Higuchi N, Laurance WF, Núnez PV, Vásquez RM, Laurance SG, Ferreira LV, Stern M,
Brown S, others. 1998. Changes in the carbon balance of tropical forests: evidence from long-term plots.
Science 282: 439–442.
URL http://www.sciencemag.org/content/282/5388/439.short

[67] Potapov P,HansenMC, Stehman SV, Loveland TR, Pittman K. 2008. CombiningMODIS and Landsat imagery
to estimate andmap boreal forest cover loss. Remote Sensing of Environment 112: 3708–3719. ISSN 0034-
4257.
URL http://www.sciencedirect.com/science/article/pii/S0034425708001764

39



[68] Potapov P, Turubanova S, Hansen MC. 2011. Regional-scale boreal forest cover and change mapping
using Landsat data composites for European Russia. Remote Sensing of Environment 115: 548–561. ISSN
0034-4257.
URL http://www.sciencedirect.com/science/article/pii/S0034425710003056

[69] PotapovPV,Turubanova SA,HansenMC,Adusei B,BroichM,Altstatt A,Mane L, Justice CO. 2012. Quantifying
forest cover loss in Democratic Republic of the Congo, 2000–2010,with Landsat ETM+ data. Remote Sensing
of Environment 122: 106–116.
URL http://www.sciencedirect.com/science/article/pii/S0034425712000430

[70] Potter C, Gross P, Genovese V, Smith ML. 2007. Net primary productivity of forest stands in New Hampshire
estimated from Landsat and MODIS satellite data. Carbon Balance and Management 2.
URL http://www.biomedcentral.com/content/pdf/1750-0680-2-9.pdf

[71] Potter C, Klooster S, Genovese V. 2012. Net primary production of terrestrial ecosystems from 2000 to
2009. Climatic Change 115: 365–378.
URL http://link.springer.com/article/10.1007/s10584-012-0460-2

[72] Potter C, Klooster S, Steinbach M, Tan PN, Kumar V, Shekhar S, Carvalho CRd. 2004. Understanding global
teleconnections of climate to regionalmodel estimates of Amazon ecosystem carbon fluxes. Global Change
Biology 10: 693–703.
URL http://onlinelibrary.wiley.com/doi/10.1111/j.1529-8817.2003.00752.x/full

[73] Potter CS. 1999. Terrestrial biomass and the e�ects of deforestation on the global carbon cycle results
from amodel of primary production using satellite observations. BioScience 49: 769–778.
URL http://bioscience.oxfordjournals.org/content/49/10/769.short

[74] Powers RP, Coops NC, Morgan JL, Wulder MA, Nelson TA, Drever CR, Cumming SG. 2013. A remote sensing
approach to biodiversity assessment and regionalization of the Canadian boreal forest. Progress in Physical
Geography 37: 36–62.
URL http://ppg.sagepub.com/content/37/1/36.abstract

[75] Reddy CS, Jha CS, Dadhwal VK, Krishna PH, Pasha SV, Satish KV, Dutta K, Saranya KRL, Rakesh F, Rajashekar
G, others. 2015. Quantification andmonitoring of deforestation in India over eight decades (1930–2013).
Biodiversity and Conservation : 1–24.
URL http://link.springer.com/article/10.1007/s10531-015-1033-2

[76] Reymondin L, Jarvis A, Perez-Uribe A, Touval J, Argote K, Rebetez J, Guevara E, Mulligan M. 2010. Amethod-
ology for near real-timemonitoring of habitat change at continental scales using MODIS-NDVI and TRMM,
2010. Submitted Remote Sensing of Enviroment .

[77] Riitters K, Wickham J, Costanza JK, Vogt P. 2016. A global evaluation of forest interior area dynamics using
tree cover data from 2000 to 2012. Landscape Ecology 31: 137–148.
URL http://link.springer.com/article/10.1007/s10980-015-0270-9

[78] Rocchini D. 2009. Commentary on Krishnaswamy et al. - Quantifying and mapping biodiversity and
ecosystem services: Utility of a multi-season NDVI based Mahalanobis distance surrogate. Remote Sensing
of Environment 113: 904–906. ISSN 0034-4257.
URL http://www.sciencedirect.com/science/article/pii/S0034425709000248

40



[79] Roerink GJ, Menenti M, Verhoef W. 2000. Reconstructing cloudfree NDVI composites using Fourier analysis
of time series. International Journal of Remote Sensing 21: 1911–1917.
URL http://www.tandfonline.com/doi/abs/10.1080/014311600209814

[80] Roy J, Mooney HA, Saugier B. 2001. Terrestrial global productivity. Academic Press.

[81] Roy PS, Roy A, Joshi PK, Kale MP, Srivastava VK, Srivastava SK, Dwevidi RS, Joshi C, Behera MD, Meiyappan
P. 2015. Development of decadal (1985-1995-2005) land use and land cover database for India. Remote
Sensing 7: 2401–2430.

[82] Running SW, Justice CO, Salomonson V, Hall D, Barker J, Kaufmann YJ, Strahler AH, Huete AR, Muller JP,
Vanderbilt V, others. 1994. Terrestrial remote sensing science and algorithms planned for EOS/MODIS.
International Journal of Remote Sensing 15: 3587–3620.
URL http://www.tandfonline.com/doi/abs/10.1080/01431169408954346

[83] Running SW, Nemani RR, Heinsch FA, ZhaoM, Reeves M, Hashimoto H. 2004. A continuous satellite-derived
measure of global terrestrial primary production. Bioscience 54: 547–560.
URL http://bioscience.oxfordjournals.org/content/54/6/547.short

[84] Running SW, Thornton PE, Nemani R, Glassy JM. 2000. Global terrestrial gross and net primary productivity
from the earth observing system. InMethods in Ecosystem Science. Springer, 44–57.
URL http://link.springer.com/chapter/10.1007/978-1-4612-1224-9_4

[85] Sala OE, Stuart Chapin F, III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke
LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Po� NL, Sykes MT, Walker BH,
Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.
URL http://www.sciencemag.org/content/287/5459/1770.abstract

[86] Sandholt I, Rasmussen K, Andersen J. 2002. A simple interpretation of the surface temperature/vegetation
index space for assessment of surface moisture status. Remote Sensing of Environment 79: 213–224.
URL http://www.sciencedirect.com/science/article/pii/S0034425701002747

[87] Scaramuzza P, Micijevic E, Chander G. 2004. SLC gap-filled products phase one methodology. Landsat
Technical Notes .
URL http://landsat7.usgs.gov/documents/SLC_Gap_Fill_Methodology.pdf

[88] Sen PK. 1968. Estimates of the regression coe�icient based on Kendall’s tau. Journal of the American
Statistical Association 63: 1379–1389.
URL http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1968.10480934

[89] Sexton JO, Song XP, Feng M, Noojipady P, Anand A, Huang C, Kim DH, Collins KM, Channan S, DiMiceli C,
Townshend JR. 2013. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of
MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital
Earth 6: 427–448. ISSN 1753-8947.
URL http://www.tandfonline.com/doi/abs/10.1080/17538947.2013.786146

[90] Shukla J, Nobre C, Sellers P, others. 1990. Amazon deforestation and climate change. Science 247: 1322–
1325.
URL https://dlc.dlib.indiana.edu/dlc/handle/10535/2838

41



[91] Skole D, Tucker C. 1993. Tropical deforestation and habitat fragmentation in the Amazon. Satellite data
from 1978 to 1988. Science 260: 1905–1910.
URL http://www.researchgate.net/profile/David_Skole/publication/6003334_Tropical_

deforestation_and_habitat_fragmentation_in_the_Amazon_satellite_data_from_1978_to_

1988/links/0912f509915d63f5a9000000.pdf

[92] Son NT, Chen CF, Chen CR, Chang LY, Minh VQ. 2012. Monitoring agricultural drought in the Lower Mekong
Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Obser-
vation and Geoinformation 18: 417–427. ISSN 0303-2434.
URL http://www.sciencedirect.com/science/article/pii/S030324341200058X

[93] Tang G, Beckage B, Smith B, Miller PA. 2010. Estimating potential forest NPP, biomass and their climatic
sensitivity in New England using a dynamic ecosystemmodel. Ecosphere 1: art18.
URL http://www.esajournals.org/doi/abs/10.1890/ES10-00087.1

[94] TuanmuMN, Jetz W. 2015. A global, remote sensing-based characterization of terrestrial habitat hetero-
geneity for biodiversity and ecosystemmodelling. Global Ecology and Biogeography 24: 1329–1339. ISSN
1466-8238.
URL http://dx.doi.org/10.1111/geb.12365

[95] Turner W, Rondinini C, Pettorelli N, Mora B, Leidner A, Szantoi Z, Buchanan G, Dech S, Dwyer J, Herold M,
Koh L, Leimgruber P, Taubenboeck H, Wegmann M, Wikelski M, Woodcock C. 2015. Free and open-access
satellite data are key to biodiversity conservation. Biological Conservation 182: 173–176. ISSN 0006-3207.
URL http://www.sciencedirect.com/science/article/pii/S000632071400473X

[96] Vaidyanathan S, Krishnaswamy J, Samba Kumar N, Dhanwatey H, Dhanwatey P, Ullas Karanth K. 2010. Pat-
terns of tropical forest dynamics and human impacts: Views from above and below the canopy. Biological
Conservation 143: 2881–2890.
URL http://www.sciencedirect.com/science/article/pii/S0006320710001710

[97] WRIS Project Team. 2015. Basins.
URL http://india-wris.nrsc.gov.in/wrpinfo/index.php?title=Basins

[98] Zhang L, Dawes WR, Walker GR. 2001. Response of mean annual evapotranspiration to vegetation changes
at catchment scale. Water Resources Research 37: 701–708.
URL http://onlinelibrary.wiley.com/doi/10.1029/2000WR900325/full

[99] Zhang L, Hickel K, Dawes WR, Chiew FH, Western AW, Briggs PR. 2004. A rational function approach for
estimating mean annual evapotranspiration. Water Resources Research 40.
URL http://onlinelibrary.wiley.com/doi/10.1029/2003WR002710/full

[100] Zhao M, Running SW. 2010. Drought-induced reduction in global terrestrial net primary production from
2000 through 2009. Science 329: 940–943.
URL http://www.sciencemag.org/content/329/5994/940.short

[101] Zhao M, Running SW. 2011. Response to comments on “drought-induced reduction in global terrestrial Net
primary production from 2000 through 2009”. Science 333: 1093–1093.
URL http://www.sciencemag.org/content/333/6046/1093.5.short

42





44


